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SUMMARY

This report contains the research on the CFD code evaluation with

emphasis on supercomputing in reacting flows. Advantages of unstructured

grids, multigrids, adaptive methods, improved flow solvers, vector processing,

parallel processing, reduction of memory requirements are discussed. As

examples, we include apphcations of supercomputing to reacting flow

Navier-Stokes equations including shock waves and turbulence and combustion

instabihty problems associated with solid and liquid propellants. This report

does not include evaluation of codes developed by other organizations. Instead,

the basic criteria for accuracy and efficiency have been established, and some

applications on rocket combustion have been made. Research toward an ultimate

goal, the most accurate and efficient CFD code, is in progress and will continue

for years to come.
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1. _TRODUCTION

The literature on computational fluid dynamics is preponderant, interwoven with

success and failure. Stable and accurate solutions are attributed to low Reynolds number,

low Mach number, and low Pechlet number. As these numbers increase, however, we

encounter convection of flow to be critical, resulting in turbulence for large Reynolds

numbers, and thermal discontinuities for large Mach numbers, and thermal discontinuities

for large Pechlet numbers. These physical phenomena lead to unstable, nonconvergent,

and inaccurate solutions.

It is, therefore, important to devise the most efficient schemes to obtain stable,

convergent, and accurate solutions for difficult flow situations such as those occurring in

propulsion systems and the space shuttle main engine in particular. Many such attempts

have been reported in the open literature for the past two decades. No consolidated efforts,

however, have been made to evaluate all of the available codes to date. Each code has

merits and demerits. Often defects are buried and unknown to the user, a cause for great

frustration.

If the fastest time---scale in the system of equations is not physically relevant for the

problem at hand, much lower modes carry the physical information as exhibited in implicit

methods [1--4]. A typical example is the viscous flow past an airfoil where the speed of

sound limitation in the cells covering the boundary layer would impose severe time step

restrictions for an explicit scheme without achieving any further accuracy. Similarly,

widely disparate time and length scales which occur in turbulent flows or highly convective

flows will require special treatments.

The use of the finite difference method (FDM), both implicit (e.g., Beam and

Warming [3]) and explicit (e.g., McCormick [5]) has been successfully applied to

aerodynamic problems. Initially, most applications were for external flow problems. More

current applications have shown these methods to be useful also for internal flow problems.



Other approaches which are becoming useful are the finite element methods (FEM)

using unstructured grids. Computational difficulties involved in flows with high Reynolds

numbers, Mach numbers, and Pechlet numbers are treated in FEM [7] in a manner similar

to FDM [8] in some cases, but there are unique features of FEM which warrant further

investigation. These include efficient treatments of widely disparate length and time scales

in convection, shocks, turbulence, and reacting fluids through multigrid adaptive methods

in supercomputing with vector and parallel processing.

For many years CFD grew around FDM as they were simple to understand and

code, easy to vectorize, in structured grids for simple geometries. However, as computers

became bigger and faster, attempts were made to simulate more and more complex flow

domains, and it appeared that unstructured grids may be flexible enough to describe these

domains. It was at this point in time that unstructured grids with finite elements - a

natural way of discretizing operators on them - entered the scene of CFD. Since then,

unstructured grids have been used in FEM together with domain splitting [9] and adaptive

refinement [10, 11]. Many more developments, however, are still needed in order to

transform FEM into efficient engineering tools for CFD.

The Beam and Warming scheme, in its basic form, can be rewritten for

unstructured grids. However, the approximate factorization used for structured grids must

be replaced by the solution of a full matrix [4]. The solution of full matrices can only be

attacked via unstructured multigrid methods. MacCormick's imphcit two---step procedure

makes heavy use of upwind---differencing, thus always assuming a structured grid, and for

this reason cannot be used in the present context. A barely implicit scheme [6], unhke the

two former methods, treats only the sound waves implicitly by solving a modified Poisson

equation for the pressure. Therefore, instead of solving five coupled equations in 3-D for

the Euler equations, only one needs to be solved. The resulting Poisson equation is again

solved via unstructured multigrid methods.



We shall discuss unstructured grids, multigrid methods, adaptive methods,

improved flow solvers, supercomputer utilization, applications to turbulent reacting flows,

solutions using finite element techniques, and applications toward combustion instability in

the following sections.

2. UNSTRUCTURED GRIDS

The accurate representation of arbitrary domains represents perhaps one of the most

challenging problems in CFD. The magnitude of this problems does not become apparent

in two dimensions because only a few singular points usually appear in the field (and may

be ignored) and, due to the computer capacity now available, a gross overmeshing in

certain regions of the domain can still be handled.

However, anyone trying to mesh complicated geometries in three dimensions with

structured grids will encounter singular lines, and the unavoidable cost of overmeshing can

no longer be ignored (the result being coarse grids).

It is by now generally accepted that unstructured grids are capable of describing

accurately complicated geometries in 3-D better than structured grids. Two different

levels of unstructuring are possible.

(1) Macro-unstructuring, where blocks of structured grids are combined to form an

unstructured grid (these are so--called zonal methods).

(2) Micrc>-unstructuring, in which case the point and element distribution can, in

principle, be random.

Although macrcy-unstructuring is being actively pursued by several groups [12-14],

the inherent structure at the difference-level precludes simple mesh refinement by local

enrichment (which destroys the grid structure). Major problems will also appear when the

region to be refined/enriched crosses zone-boundaries. Micro-unstructuring does not have

these inherent limitations, but does have disadvantages such as programming difficulties

and large storage requirements.



However great the disadvantages of micro-unstructured grids may appear, the

advantages these grids offer by far outweigh them. For example, (1) any geometry can be

described [15,16], (2) mesh refinement either by movement [17-20], enrichment [21-31], or

remeshing [32] presents no problems, and (3) domain splitting [O, 46] for transient problems

can easily be performed. Recently, Jameson [16] also presented results using unstructured

grids, and this alone may indicate a turning point in the development of CFD.

The fast generation of grids for arbitrary domains in three dimensions has been the

focus of much research in recent years. A variety of different approaches have been

investigated. The most promising seems to be: the macro--element approach [34, 35],

Watson's algorithm [36--41] for Voronoi tesselations combined with a point distribution

obtained by superposition of local (structured) grids [16], modified octree [42], on an

advancing front [32,43,44], and from a regular background [45]. All of them have

advantages and disadvantages, and none has been fast and simple enough to generate

efficiently grids of the size needed in 3-D aerodynamic simulations. Grid generation for

unstructured grids in 3-D has been pursued for only a few years by a few individuals.

Based on the current state-of-the-art, the following conclusions are drawn:

• Partially unstructured grids (the macro-element approach [34,35]) do not offer

enough flexibility to serve as the basis of a general mesh generator for complex

domains, unless some major breakthrough in interactive graphical display is

achieved.

• Use of regular background grids [45] is not advisable for unbounded problems, as

element stretching and point clustering are not accommodated easily. However, this

technique may prove useful for internal flow problems.

• The generation of points via superposition of local grids (mapping) [16] seems to

offer the greatest flexibility at minimal cost. The point distribution for each local

grid is obtained algebraically and is therefore very fast. The grids are chosen from a

menu of possible local grids.



• The tetrahedrization of the domain via Watson's algorithm [36,37], as employed and

modified in [16,18,41], is not advisable as this algorithm is suboptimal, requiring

O(N rS) operations, and the treatment of voids in the fluid domain becomes both

grid logic and CPU-intensive.

• It seems attractive to pursue the element generation of [44], combining it with a fast

neighbor finder [46--48].

3. MULTIGRID METHODS

Multigrid methods combine two very desirable properties in that they require the

least amount of operations to solve large problems (O (N logN) for a problems with N grid

points) and their storage requirements are also low (again, O(N logN) for a problem with N

grid points). In 1985, LShner and Morgan [46, 49] advanced the concept of unstructured

multigrid methods. It became clear that as the finest grid had to be unstructured in order

to accurately represent the domain, it could not be obtained by subdivision of some coarser

grid. Instead, a set of unrelated coarsening grids had to be employed. The reason why

multigrid methods should still work on sets of unrelated, unstructured grids - the same

argument on which all multigrid methods base the convergence rate estimates -is that if

the residual is smooth, any coarser grid should be able to "see" it. In all other aspects, the

theory follows exactly the lines of traditional multigrid methods [50,51].

The solution of elliptic PDE's via multigrid methods is by now well understood, and

rigorous theoretical estimates for the expected convergence rates are available [51]. The

main difficulty that can appear for unstructured grid lies in the construction of efficient

smoothers, as neither line- nor plane- relaxation are possible. If Jacobi-type smoothers

are employed, the convergence rate of the highest modes can degrade seriously for highly

stretched elements or diffusion tensors in which one direction is dominant [52]. Three

different smoothing schemes are known to avoid this problem:



(1) Use of supersteps: here, the simple Jacobi-smoothing is over- and under-relaxed

alternately using a Chebyshev-series. Although not advisable for highly stretched

grids, e.g., stretching beyond 1:100, this method is very simple to code and lends

itself easily to vectorization.

(2) Solution of local problems: instead of a tighter coupling of modes via line- or

plane-relaxation, groups of elements are relaxed, producing the desired effect [53].

This method is applicable in all cases, but may not be vectorizable and also requires

some software-overhead.

(3) Element-by-element preconditioning: although the transfer of information in the

element-by-element iterative solver [54,55] is local in nature and therefore cannot

compete with multigrid methods, this scheme may prove useful as a preconditioner.

The compression of the eigenvalue spectrum is achieved by multiplying the system

matrix with the (local) element-matrix inverses where appropriate. Vectorization

of this type of method should also be investigated further.

For the hyperbolic case, the theory of multigrid methods is still far from complete.

Although Ni's method [56-59] has been shown to work well in many cases, Jameson's

multigrid solver [60,61] seems to emerge as the more reliable. This is to be expected, since

the Kunge-Kutta time stepping allows more possibilities for choosing appropriate

"damping-sequences" than the Lax-Wendroff schemes. The combination of unstructured

multigrid methods with Runge-Kutta time stepping for the Euler equations also appears to

be useful [62,63].

4. ADAPTIVE METHODS

In convection--dominated problems, discontinuities or regions with sharp gradients

will usually appear. The regions in which the flow variables vary abruptly are usually

small and are surrounded by large portions of the field in which the flow varies smoothly.

Therefore, it is attractive to locally and adaptively refine the mesh where needed until a



7

preset tolerance for the error has been achieved. Because of the obvious advantages of

adaptive refinement, this field is currently receiving increased attention in the literature

[10,11]. Any adaptive refinement scheme consists of three different stages: determining

what we want to achieve by refining the grid, developing an error indicator/estimator to

detect the regions to be refined, and a refinement strategy such as movement, enrichment,

or remeshing. There are three specific directions to be considered:

(a) Typically, one aims to have an equidistribution of the "error" throughout the grid

[10,11,51--631.

(b) Whole families of error indicators based on different concepts have been shown to be

useful. Among the most popular are those based on the change of some "indicator

variable" (e.g., entropy [27] or Mach number [20]), those based on interpolation

theory estimates [18, 21-26,64,65], and the indicators based on Richardson

extrapolation [66].

(c) For the accurate resolution of the flowfields at or near discontinuities,

P--enrichment does not seem to be attractive (besides, P--enrichment implies a

considerable increase in software complexity). However, it may prove useful for

boundary layers, where an essentially smooth flowfield needs to be resolved.

Although further research on more reliable error indicators [65] is needed, the

directional refinement advanced in [31] appears to be satisfactory. It is based on the

observation that in most flowfields the regions that ought to be refined are of lower

dimensionaiity than the physical space in which the solution is sought. Therefore, if thin,

elongated elements parallel to those discontinuities could be generated during the adaptive

refinement process, considerable savings in CPU and storage would be realized without

sacrificing accuracy.

The first algorithm devised for this purpose was based on mesh enrichment [31], and

turned out to be storage, CPU, and software intensive. Since then, Palmerio and Dervieux

[20] have tried to incorporate this concept into a mesh movement framework, while Peraire
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et al, [32], have advanced the concept of refinement by remeshing. This last concept

represents a new and powerful refinement strategy, combining in a very elegant way the

advantages of mesh enrichment (such as versatility by the introduction of points and a

coarse initial grid for steady state problems) and mesh movement (which produces the

desired element shapes near shocks). If it proves useful in 3-D (the search-problem needs

to be addressed here), it may completely replace movement and enrichment as refinement

strategies. Another major area of applications for fast remeshing algorithms is given by

3-D Free-Lagrange Methods [66], where restructuring of the grid currently represents a

major problem. Remeshing would be an ideal solution in this case.

When solving transient problems in which only a few discontinuities appear,

adaptive refinement can also be useful in reducing storage and CPU requirements.

However, in comparison to steady state problems, further constraints need to be placed on

the refinement algorithms in order to realize significant savings:

(a) As the grid adaptation has to be performed many times, the adaptation algorithm

must be fast, and therefore must lend itself to vectorization/parallelization.

(b) As the grid adaptation process becomes an integral part of any code, the algorithm

should not be storage intensive.

(c) As the feature that has been refined may pass again (e.g., a shock reflection), the

original grid should be recovered after the feature has passed.

Of course, directional remeshing or even movement could be incorporated for those

cases in which the discontinuities are fairly straight (for curved shocks that interact with

each other, only classic h--enrichment will yield acceptable solutions), but the interpolation

problem must be solved (otherwise the shock--speeds will be wrong). Another potential

problem may arise due to the (apparent) non-vectorizability of the remeshing algorithm.

Obviously, this whole topic of adaptive refinement for transient problems represents one of

the most difficult ones in CFD; many further innovations are expected.



5. IMPROVED FLOW SOLVERS

For unstructured grids, the extension of schemes from 1-D to 2-D/3-D cannot be

performed by operator splitting. This means that only schemes that are truly multi-

dimensional in nature can be used. Toward this end, Petrov---Galerkin methods [67], the

flux corrected transport (FCT) algorithms, and those schemes generalized to multi-

dimensional problems [71-74] appear to be most suitable.

The idea behind FCT is to combine a high order scheme with a low order scheme in

such a way that in regions where the variables under consideration vary smoothly, the high

order scheme is employed, whereas the low order scheme is favored in those regions where

the variables vary abruptly. In this scheme, no nonphysical over/undershoots are created.

It is at this point that a further constraint, given by the conservation equations

themselves, must be taken into account: strict conservation on the discrete level should be

maintained. The simplest way to guarantee this for the node-centered schemes considered

here is by constructing schemes for which the sum of the contributions of each individual

element (cell) to its surrounding nodes vanishes, i.e., "all that comes in goes out". This

means that the limiting will be carried out in elements (cells).

There are several aspects in FCT worthy of mention:

(a) For systems of equations, no obvious or natural way of limiting has been identified

yet. Several possibilities have been explored, among them (for the Euler equations)

operator sphtting (treating each equation independently), the use of the average of

the limitors for each equation, hmiting based on some "key variable" (pressure,

entropy), and others [74].

(b) Entropy is not always monotonic for FCT. This may be due to the low order

scheme employed. It is obvious that the ultimate low order scheme is Godunov's

scheme [75-78], but this scheme is much more expensive that the simple smoothers
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(c)

currently in use [73,74]. A simpler, more efficient version of Godunov's scheme for

unstructured grids should be developed.

Steepeners for contact discontinuities: as contact discontinuities are linear, any

scheme that does not possess a steepener will eventually flatten these out. Note

that no physical argument leads to a distinction of linear and nonlinear

discontinuities. Some kind of detection mechanism may be usefully incorporated for

contact discontinuities.

6. SUPERCOMPUTER UTILIZATION

However good a method may be, if it does not lend itself to some form of

parallelism, its future will always remain a dubious one. The speed-up ratio between a

code that exploits the machine hardware and one that does not hes between 1:10 and 1:20

on today's vector machines. This performance ratio will go up drastically when massively

parallel computing becomes available [79,80]. Fortunately, the bigger the problem to be

solved, the easier it is to exploit some inherent parallelism of an algorithm.

6.1 VECTOR PROCESSING

On vector machines the important factors that determine the performance of an

algorithm are DO-loop length and contiguity in memory (even on a CRAY!). Normally,

the vector length in CFD codes for element subroutines is of order 8-10, far too short to

exploit vector-machine hardware. The only way to achieve acceptable vector-lengths is to

perform the assembly process on groups of elements, possibly the whole grid at once. This

means that one-element type codes should be favored, in contrast to the more usual

many-element type code now in use in industry.

Three different types of DO-loops are most often encountered:

(a) Loops over the same type of data: these are loops which involve only one type of

data (either point or element data) and are the "favorites" of vector machines.
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(b)

(c)

GATHER-loops: this type of loop appears when point information needs to be

processed at the element level (a point may be shared by several elements). Most

vector machines have hardware-tailored GATHER devices, but this type of loop

will, nevertheless, run between 2.5-5.0 times slower than type (a).

SCATTER-ADD: these loops occur when assembling element contributions at

points (e.g., formation of a right-hand side vector). As a point may receive

contributions from several elements in the same loop, the simple SCATTER

operation is not sufficient [81--83]. Coloring schemes have to be devised, and the

original loop (over all the elements) has to be broken up into groups of elements so

that the use of straight SCATTER operations becomes possible. This type of loop

will run at roughly the same speed as the GATHER-loop.

6.2 PARALLEL PROCESSING

When speculating about parallel computing, one ought to distinguish between

mildly parallel machines (up to 10 processors) and massively parallel machines. Examples

of mildly parallel machines are the CRAY XMP/48 and the systems of array processors

attached to a host machine. From a user's point of view, the main difficulties facing the

development of codes on such a system are the poor FORTRAN capabilities and the very

small local memory of the presently available array processors, as well as the very bad

debugging software. Therefore, it pays off the rewrite only codes which have been

thoroughly tested and will undergo no major modifications for these machines. In an area

as dynamic as CFD, few codes ever made it to an array processor. However, FCT models

have and with great success [84,85].

From a theoretical point of view, all algorithms which split the domain into

sufficiently large subdomains are suited for mildly parallel machines. Examples of this

kind are simple operator splitting (e.g., line by line, as long as the line is big enough), or

the growing family of domain splitting algorithms [9,33].



12

6.3 REDUCTION OF MEMORY REQUIREMENTS

Schemesoperating efficiently on unstructured grids require more memory than their

structured grid counterparts. Among the possibilities that can be pursued in order to

reduce memory requirements, we mention the following:

(a) Careful coding: an obvious possibihty, but one that is usually considered only after a

code has been shown to work (i.e., at a stage where as little as possible should be

changed). Experience indicates that 30% reduction of memory may be achieved at

the expense of 20% increase in CPU.

(b) Sphtting into subdomains: the peak efficiency of vector machines is achieved for

vector lengths that are only a fraction of the total number of grid points typically

encountered when solving 3-D problems. The idea is then to save as much storage

on temporal arrays as possible, performing all algorithmic steps (formation of

right-hand sides, hmiting, etc.) on subdomains. Memory requirements may be

reduced by about 50% at the expense of some additional CPU time.

(c) Encasement of the unstructured grid in a structured grid: here, unstructuredness is

only allowed close to the body where the highest geometrical/physical complexity is

expected. At wider distances from the body, a structured grid is employed. This

approach holds considerable promise of reducing requirements by more than an

order of magnitude, but will require sophisticated programing and mesh generation

capabihties.

7. SUPERCOMPUTER APPLICATIONS TO ROCKET COMBUSTION

INSTABILITIES

7.1 GENERAL

The growth or decay of energy is responsible for instabihty or stability of waves in

fluids, respectively. In general, there are three different sources of energy growth or decay.
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They are: (1) pressure fluctuations (acoustic waves); (2) velocity fluctuations

(hydrodynamic waves due to transition to turbulence, shear layers, or shedding of

vortices);and (3) density fluctuations (intrinsic waves due to compressibility and/or chain

reactions of unstable chemical radicals in combustion). Extensive research works have

been carried out for acoustic instability [135-140] and hydrodynamic instability [140-143],

with limited studies available on intrinsic instability [144]. Flandro [145] presented the

energy balance method in which the acoustic energy equation was used to develop the

nonlinear stability equation based on isentropic assumption and linear superposition of

entropy change. Each of the above types of instability requires different methods of

analyses and unification of such methods has not been attempted. The objective of the

present paper is directed toward our desire to introduce a unified general method for wave

instability analyses.

The basic approach toward this achievement, called the entropy controlled

instability (ECI) method, is founded on the concept of entropy changes in which

nonlinearity is a prime factor. This is because our ultimate goal is a general theory which

enables nonlinear waves to be studied in detail without making simplified initial

assumptions such as isentropy. Nonlinear waves invoke nonisentropy in which growth or

decay of energy is properly accounted for. This line of thinking is dictated also by our

desire to deal with compressible fluids, with a special case reduced to incompressible flows.

To this end, we examine the energy equation written in terms of entropy changes as well as

fluctuations of pressure, velocity, and density. Introducing spatial averages, or applying

the Green-Gauss theorem, we integrate the energy equation by parts through which

boundary surface integrals arise, playing the role of acoustic intensities. Additional terms

representing the spatial growth of energy also arise in this process of integration by parts.

Performing the time averages, we finally arrive at the nonlinear, nonisentropic stability

equation, which assumes the form of nonlinear integro-ordinary differential equation for

the energy growth factor indicative of stability or instability of waves. The integrands of
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this nonlinear stability equation (the word 'nonisentropic' omitted but implied hereafter)

are contributed from the results of the Navier-Stokes solutions using the Taylor--Galerkin

finite elements [146-150]. The nonlinear stability equation will then be solved using the

fourth order Runge--Kutta method to calculate the energy growth factor. It is shown that

the general theory presented here is reduced to a simple linear theory of Cantrell and Hart

[135] or Culick [136] as a special case with appropriate assumptions.

We shall discuss the details of these processes in the following sections.

7.2. ENTROPY CONTROLLED INSTABILITY (ECI) METHOD

7.2.1 NAVIER--STOKES SOLUTIONS

In order to perform stability analysis, it is necessary to first solve the unsteady

Navier-Stokes equations representing the desired physics. To this end, the most general

conservation form of Navier Stokes equations for compressible flows is written as

oqU _Fj o'_]j

:+N+n-:=B
where

U

"p

PVi

pE

P Yk

Fj =

[pvj

p V iVj "4-P_ij

p Evj + pvj

P YkVj

Gj =
--Tij

-- T i jVi -{- qj

P DYk,i

U N

P k_lYkfkiVi

Wk

where 7"ij is the viscous stress tensor

2
Tij : /Z (Vi,j -4- Vj,i -- _ Vk,k6ij)

(:)

(la,b)

(ic,d)

(le)
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and E is the stagnation energy

E--e+_viv i-%T- +_viv i (lf)

and fki is the body force and qj is the heat flux vector.

N

qj = - AT,j + p D k_l HkYk'J (Ig)

Here, A and D are the thermal conductivity and mass diffusivity, respectively. H k is the

total enthalpy of species k, Yk is the mass fraction for the species k, and w k is the reaction

rate for the species k. Note that all derivatives are covariant in case of cylindrical

coordinates.

For turbulent flows we add to (1) additional transport equations for turbulent

kinetic energy and dissipation energy (k-_ model), respectively,

8 k 8 k)+ - -- I hl

(li)

where G is the turbulent thermal dissipation energy transport and

#t #t k2

#k=#+o. k, #_=#+_r_ ' #t=P%'/ ,

c_ = 0.09, c I = 1.44, c 2 = 1.92, _rk = 1.0, _ = 1.3

Appropriate modifications to the equations of momentum and energy and the suitable

turbulent combustion model should be included as detailed in [146].

The solution procedure using the Taylor--Galerkin method are found in [147-151],

which will not be repeated here. Examples include shock waves contributing to nonlinear,

nonisentropic combustion instabilities for the space shuttle main engine combustion/thrust

chamber and the side-burning solid propellant rocket motors. Calculations of energy

growth factors and stability criteria are discussed below.
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7.2.2 NONLINEAR, NONISENTROPIC STABILITY ANALYSIS

With the solutions of unsteady Navier-Stokes equations for the time-dependent

periodic oscillatory initial boundary conditions available, we now turn to the entropy

controlled instability (ECI) method of determining the unstable wave phenomena. To

introduce entropy changes in the energy equation, we begin with thermodynamic relations

for an ideal nonisentropic gas and write the pressure gradients in terms of density and

entropy gradients,

P'i ----- a2 P'i q- _-_ S'i (2)

Cp

where a is the speed of sound, S is the specific entropy, and the comma denotes the partial

derivative with respect to x i. The gradient of the stagnation energy, E, assumes the form

E,i = (CpT-_ + ½ vjvj),i (3)

where the repeated indices imply summing. Performing the differentiation implied in

(2) results in

C v C v

E,i = _ P,i - _ p P,i nt" VjVj (4)
p2 ,i

where R is the specific gas constant. Substituting (2) into (4) yields

PE,i = _ P,i + _ S,i _- P VjVj'i (5)

Let us now examine the conservation form of the energy equation

O
(pE) % (pE v i - aij vj -{- qi,i),i = 0 (6)

where aij is the stress tensor

2
O'ij "- -- P_ij nu _ (Vi,j "{- Vj,i -- _" Vk,k _ij) (7)

Substituting (5) into (6) gives

_(pE) + E(p vi),i + v i P,i q- _ S,i -{- pvjvj,i - (°'ijvj),i -b qi,i = 0 (8)

This is the entropy controlled energy equation, instrumental in determining the nonlinear

wave instability.



17

The pressure, velocity, and density may be written in the form

p=_+p'

Vi ---- Vi -{" V_

p=_-I- p'

(9a)

(9b)

(9c)

where the symbols, bar and prime, denote the mean and fluctuation parts, respectively.

From thermodynamic relations we may write the entropy difference in the form

S _ So _- Rbl [(1.1_ _)_----/" (1 _t_
P P

(10)

Expanding the RHS of (i0) in infiniteseriesand aftersome algebra,we obtain

S = R [S,,, + S(2, + S,3, + S(,, + ...] + SO (11)

where SO is the entropy at the initial state (S O = 0), and

=

S(2) =-_ p

_Sc3) - _ P

1[ 1 (__),______(_)4]S(4_ =-_ _ p

Here the terms with fifth order or higher are neglected, assuming that they are negligible.

To obtain acoustic energy equation, we apply the Green-Gauss theorem or integrate

(8) by parts and take a time average in the form

(Ifl_(flE) dn-blr [Epvini-bvi(Pni+_Sni-kpvjvjni)-aijvjni -A(T)T,in i
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]
k=l f/

where 12 and P represent the domain and boundary surface, respectively, (. > implies time

averages and n i denotes the component of a vector normal to the surface.

It is interesting to note that the domain integral terms (last four terms) arise as a

result of the integration by parts implying the spatial growth of energy. This spatial

growth of energy is in addition to the usual temporal growth of energy indicated by the

domain integral with the time derivative (first term in (8)). Let e be the energy growth

factor, stable for 0 < e < 1, unstable for e > 1, with e=l indicating the neutral stability.

The fluctuation terms in (9) and (11) contribute to (12) as multiples of higher order

fluctuations. Multiplying the like powers of e with the fluctuation terms of the same order

and retaining the terms up to and including the fourth order, we obtain

(I(') dg0 = <In(_o + e_l + e2_2 + e3_ + e4_4 + ...)dl2) (13a)

<It(.)dr> = <_r(¢O+ _¢,+ c=¢2+ e3¢3+ e4¢4+ ...)dr> (13b)

Here _o and ¢o contain only the mean quantity, 61,6_,6_,64 and ¢I, ¢2, ¢3, ¢4 axe referred

to as the first,second, third,and fourth order perturbations capable of growth and decay in

acousticenergy as dictated by the magnitudes of e,growing ife > 1 and decaying if e < I.

Notice that the relations in (9a, b, and c) imply that the Navier-Stokes solutions are

obtained with the initial condition e = 1 and the energy in (13) may grow or decay in

accordance with the magnitude of e from the initial or reference state e = 1.

Performing the differentiation as implied in (12), we obtain

69 (e2E1 q- e3E2 + e4E3) = e2II q- e312 + e413 (14)2E

in which the zeroth order terms are canceled and first order terms vanish due to time

averages. Notice that the time averages are contained in E(i) and I(i). Here, the energy
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growth factor e is an explicit function of time. However, E(i) is no longer an explicit

function of time because of its time averages. Thus the partial derivative with respect to

time in (14) involves only e, not E(i), so that

de e2I_ + e312 + e413

_t-= 2eEt + 3e2Ez + 4e3E3

or

de_(eil+e2iz+e313) 1 3E2 E2 2E3]

where higher order terms and those terms much smaller than unity have been neglected.

It follows from (15) that the nonlinear stability equation takes the form

d_
_-- ale - a2e 2 - the 3 = 0

This is

and the

of first,

(16)

a form identical to Flandro [145], although the basic approach to the formulation

solution procedures differ. Here al, a2, and a a are energy growth rate parameters

second, and third order, respectively.

1 I (17a)
0_I= _i I 1

1 (i 2 3E2
a2 = _ - _.Br_11i) (17b)

with

1 3E2 E2 2 2Es]
as = _ {Is-_E_I I2 + [_ (E_) -ETI I,} (17c)

= I a(l) dO)( n

= I a(2) df_)E2 (

-- I a(s) dfl)Es (

Ii=(I b(*)dfl)-(Ir C(l) n i dr)

(18a)

(18b)

(18c)

(19a)
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c_ 21 n i dF) (19b)

ni dr) (tgc)

Explicit forms of a _ tl, b ¢ t_, and cc tl will be discussed in Section 3 and the integrands for

the second and third order growth parameters are shown in Appendix A. The physical

significance and interpretations of the above process will be discussed in the following

subsection.

7.2.3 PHYSICAL INTERPRETATION

The physical significance in the above development may be schematically

demonstrated as shown in Fig. 1. First, unsteady Navier-Stokes solutions with time

dependent oscillatory initial boundary conditions are obtained at each computational grid

as shown in Fig. la. A typical variable vs time, (Fig. lb), at any grid point (finite element

node) may exhibit sawtooth type wave forms as well as sinusoidal waves. Imagine that

several variables at each of the several thousand nodes present themselves in the form as

shown in Fig. lb. Each wave form of different frequencies at different spatial locations is

expected to contribute to the overall stability or instability. Take one complete peak wave

form period as indicated by r = nat where At is the Navier-Stokes time step with n

usually being in the range between teens and hundreds.

Performing the time average for this time period (nAt), we obtain the mean

quantity (f) of the variable f. Then the disturbance (fluctuation) part f' is calculated as

f, =f-_

where f is the Navier-Stokes solution.

From these data, spatial integrations involving both domain and boundary surfaces

and time averages (Fig. la) as dictated by (18) and (19) are then carried out. Here,

I a ¢nl dr denotes the temporal growth of whereas f bcnl df_ represents the spatialenergy,
fl J fl
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r

growth of energy. The boundary integral | c _nl n i dr indicates the acoustic intensity.
J p i

For combustion chamber applications, the burning surface admittance, response functions,

or information on nozzle entrance or acoustic liner, etc., can be initially imposed on the

Navier-Stokes solutions as boundary conditions to generate the oscillatory motions as

depicted in Fig. lb. These boundary data, however, reappear as called for in the integrand,

c cnl , in (19). They act as acoustic intensity and eventually contribute to the
i

determination of stability or instability of the system.

The ingredients of a cn_ b cn_ and c cn_ arise from fluctuation parts of the
' ' i

Navier-Stokes solutions as well as the mean parts. These fluctuations through the

temporal growth of energy a ( n_, spatial growth of energy bcn_, and acoustic intensity c Cn_
i

are responsible for driving the system toward instability. The consequences lead to

determination of the energy growth factor vs time as shown in Fig. lc by solving the

nonlinear stability equation (16). It is important to realize that the Navier-Stokes

solutions and the nonlinear stability equation (16) encompass acoustic waves,

hydrodynamic (vortical or shear layer) waves, intrinsic (density fluctuations or chemically

reacting combustion) waves, or combined effects of all types of wave interactions.

Notice that, in (6) and (12), heat flux changes are not directly involved. This is

because the spatial integration of fluctuations of heat flux or temperature vanishes upon

time averages. However, fluctuations of temperature and chemical species mass fractions

have been included in the Navier-Stokes solutions of (1), thus indirectly contributing to

the fluctuations of density (p') in the stability calculations.

Some comments on the mean pressure changes (DC shifts), pressure coupling,

velocity coupling, limit cycles, and triggering are in order. These phenomena often

observed in solid propellant combustion chambers, would appear in the flowfield under

appropriate initial and boundary conditions during the Navier-Stokes calculations. The

purpose of the ECI method is merely to determine whether the flowfield containing such
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physical phenomena is stable or unstable. It is emphasized that all physical phenomena are

expected to prevail and be identified in the solution of Navier-Stokes equations, which are

then reconfirmed in the stability analysis.

7.3. LINEAR INSTABILITY

To gain an insight into the solution of (16), we may neglect the last two terms

associated with the second and third order energy growth rate parameters and write

de
- = o (20)

which yieldsa solutionin the form

tn_= att+c 1

To establish an initial condition, we assume neutral stability _ = 1 at t = O.

= O. Thus, the solution takes the form

Qlt
(22)

Under thisinitialcondition,there existsa unique solutionfor any given at with t > 0. The

stabilitycriteriaare:

Stable: 0<E<lwith-m< a t<0

Neutral stability:E = 1 with at= 0

Unstable: 1< _<®with0< a,<®

Although these criteriaare not applicable for the nonlinear equation (16) when a2 and ot3

are involved, the same initialcondition, q = 1 at t = 0, as originallydefined in (13a, b),

can be used. That is,there existsa unique solution E for any given % a2 and a3 with t >

0. Therefore, the criteriafor stabilityin terms of c remain the same with various

combinations of % a2, and oq.

(21)

This givesci
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7.3.1 NONISENTRIPIC CASE

Notice that the integration involved in the growth rate parameters al, a2, and a 3

and the subsequent solution of the nonlinear ordinary differential equation (16) are

formidable. However, it would be informative to examine the case of linear instability

(a 2 = 0, (_3 = 0) given by (20) but with nonisentropy. Therefore, the first order energy

growth rate parameter takes the form, from (20) and (17a),

I b (t) (/ c (1)

f

lde I1 ( fl dl2) - Jfl i
nidF)

=_- =_ = (23)G 1

(2 | a (1) dIl)
f,

J

Assuming that the fluid is inviscid (# = 0) the explicit forms of integrals in (23) become

I I(ia (1) dfl = v]vj + p VjVj) di2
fl fl

(24a)

I I { P'P' 2 1 , ,,, _ip,)( p'b (t) dfl= P_i(- + PP' + +(_v_+
a n ('y-1)_2 (7--1)_3 _ VjVj)'i ("y--1)p

p' _ , _iP'P' viP
_ + VjVj), i + v_o,(......L_ _}_ ½ rcjrcj), i + _ ( + __ p,2

(')_--1) _ 2 (')_--1)_ _2 _a

+
p'v_ _v_p' viP' PviP'

"),i + P'(

_2 9 92
+_),_ + (-P-: _p'

p ('),-1)_ ( 7-i)_ )(_vl

,- p'2 '2
+ 7P 2)(ph),_+ _j(gvlvi+ p'_jv_

+ PVi), i + (-- 2(?_i)_2 2(7-1)9

W #'ViVi),i-{- Vj (grcivj -{- 9 V_j -{- p'rCi_j),i (24b)
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I c_Pnidl"= I {_i(- P'p' 2 , ,+ PP'+ ½vivj)+ vi+ --P'-
r r (7-1)_ 2 (7-1)_ _ ('y-1)_

-- PP' Jr 'vjvi) -[-p'v_ (-_ .-[-½ vjvj) .-[-p'v_ Jr (- p,2

('7-I)_2 (7--I)_ 2(9'-1)_2

+ 7P'2 )PVi+( P' 7P' WBv"+P'Vi) +vi(_vjvj
2(7-1)p2 (7-1)_ (T-1)_''_ _

'l

I-- ! I ---- f ;-- -- I I
Jr 2# VjVj) -[- V i (2#ViV i -b # vivi) -{- v i p' n i dr (24c)

Notice that the first term on RHS of (24a) represents the kinetic energy of the

sound wave. If isentropic assumption is made, then p' can be expanded into infinite series

in terms of p', p,2 ... such that the second term on the RHS of (24a) contains the potential

energy of the sound wave usually identified in the linear acoustic energy equation.

However, our objective here is to allow entropy to change and, therefore, we must keep #'

to remain subjected to nonisentropy. Another important observation is the domain

integral for 5 (l) which has appeared for the first time as a result of the integration by parts

(24b), signifying the spatial growth of energy. The boundary integral for c! 11ni contains
1

the terms of acoustic intensity normally identified in the linear acoustics, but significantly

in a different form. Additional terms which arise in the process developed in this analysis

will allow determination of stability or instability of wave motions with explicit changes of

entropy contributing to the growth or decay of energy. However, it is not possible to

evaluate the integrals (24a, b, c) because the density fluctuations p' cannot analytically be

determined. This difficulty can be resolved in a certain special case if isentropy is assumed

as discussed below.

7.3.2. ISENTROPIC CASE

If the flow is isentropic then it can be shown that
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p,=pL+1 (2s)
_2 _ _ 72 p2 73 _3 74 _4

where _. denotes the speed of sound without flow. As fax as the linear stability is concerned

only the first two terms on the RHS of (25) will contribute to (24a, b, c) as seen from

substitution of (25) into (9c) and subsequently to (24a,b,c).

n n(- vjvj

+ Z vjvj + ""),i + "'" d_ (26b)

I f { P'2_'i P'ViVjVj }
c_1)nidr = p'v_+ - + _ v_Vjvj + g2 + "'" nidr (26c)r i r _2

Since p' does not appear in the integralsof (26a, b, c) itisnow possibleto substitute

analytical forms of p' and v_ in terms of time dependent acoustic eigenfunctions and

perform explicitanalyticalintegrations. However, it is clear that the additional domain

integral(26b) and many more additionalterms arisingas a resultof the entropy controlled

energy equation given by (8) or (12) will produce the results quite contrary to the

traditionalisentropicsolution,(seeCantrell and Hart [135]or Culick [136]).

[ [ 'v' p'2vi P'ViVjVj]
- (Jr[P i + -'- + _vlvjv] -t --2J nidr)

at = _,2 a (27)

I _pt
, p,2 _j vj

vivj+ +--)da)2 (
2_ 2 R2

Note that the terms on the numerator are the same as the first four terms of (26c) with the

negative sign as indicated in (19a), and the terms of the denominator are identical to those

in (26a). However, the domain integral of (26b) is absent. This integral contributed by

b ¢_) represents the spatial growth or decay of energy as balanced by the boundary

conditions and acoustic intensities on the boundary surface. This is in contrast to the
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temporal growth or decay of energy originating from (26a).

Despite the special feature in the proposed formulation, however, the analytical

forms for p' and v_ as used by CantreU and Hart [1], are incapable of simulating sawtooth

type shock waves. For example consider the acoustic field of a cylinder with the radius R

and length L,

Here angular frequency, w, is defined as

= (F) +

with ?, m, n, being the positive integers or zero, Jmn the Bessel function of order m, and/_mn

the nth root of J_m(/3) - 0. Retaining only those terms arising from the standard acoustic

energy equations (without employing the entropy controlled energy equation), a simple

solution can be obtained using (28a, b) to calculate the linear energy growth rate

parameter _1 as demonstrated by Cantrell and Hart [135]. If the entire terms implied in

(2fia, b, c) are used, however, it is no longer possible to obtain analytical solutions.

7.4 NONLINEAR INSTABILITY

Nonlinear, nonisentropic waves occur in many industrial propulsion combustion

systems. Shock waves may interact with turbulent vortical waves or shear layers of liquid

jets in gas medium. Density fluctuations due to chemical reactions may also be combined.

We have seen that analytical solutions of even the linear instability by ECI method

presented in the previous section are intractable. First of all, the fluctuation variables p',

v_, and p' are to be numerically calculated by solving the Navier-Stokes equations. Then

we must perform numerical integrations required to evaluate the energy growth rate
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parameters a 1, a2, and a 3. Subsequently, numerical solutions of the nonlinear ordinary

differential equation must be carried out.

Numerical integrations as required by (18a, b, c) and (19a, b, c) can be performed

most efficiently by Galerkin finite element techniques to calculate the energy growth rate

parameters al, a2, and a_ according to (17a, b, c). Finally the nonlinear ordinally

differential equation (16) is solved using the Newton-Raphson method to determine the

energy growth factor e. Thus, it is seen that the determination of stability (0 < e < 1),

instability (e > 1), or neutral stability (e = 1) is made available for each nAt period and

we move on until desired time is reached as shown in Fig. lc. It is interesting to see that,

in this decision making process of stability or instability, '1all" nodal points (thousands of

nodes) with their nodal values of "all" variables have participated. Every wave peak,

whether sinusoidal or sawtooth type, has been recognized. Shock waves interacting with

turbulence, shear layers, or shedding of vortices, or effects of chemical reactions can be

reflected in calculations of (17 a, b, c) and could have eventually contributed to the

solution of (16) for determination of stability or instability.

Solutions to the nonlinear ordinary differential equation (16) may be obtained using

the fourth--order Runge-Kutta method. Iterations will continue until convergence.

7.5 SOLUTION PROCEDURE

It is clear that the solution consists of three parts. First the Navier-Stokes

equations are solved. Then the results of the Navier-Stokes solutions are used to calculate

the energy growth rate parameters. Finally the energy growth factor is computed by

solving the nonlinear, nonisentropic stability equation. Step-by--step solution procedures

are described as follows:

(1) With appropriate boundary and initial conditions, solve the Navier-Stokes

equations. Initially, the mean pressure, _, and temperature, T, based on the ideal
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(2)

(3)

(4)

(s)

(6)

(7)

(s)

gas law, are specified everywhere. At the inlet for liquid propellants, however, the

oscillatory pressure is specified [p = _ + d sin wt)], where d is the % disturbance

and w is the frequency. For the solid propellants, the burning surface gas normal

velocity (v) is computed from the response function and propellant burning rate

such that v = _(1 + d sin wt).

Calculate p, vi, p, and T. Taylor---Galerkin finite element method with adaptive

meshes is used in Navier-Stokes solutions.

Advance time steps (At) of Navier-Stokes solutions to obtain wave oscillations to

cover at least one wave period. At is determined continuously which satisfies an

acceptable Courant number.

Take time averages for the period nat with n chosen such that at least one peak

wave period is covered. These time averages lead to p, vi, and _.

Calculate the fluctuation quantities as p' = p - _, v_ = v i - _i, P' = P - P, where p,

vi, and p represent Navier-Stokes solutions.

Calculate the energy growth rate parameters al, a2, and a 3 from (17a, b, c) using

the results of step 5, above.

Solve the nonlinear differential equation (16) using the Runge---Kutta method with

the initial condition e = 1 at t = 0, corresponding to neutral stability.

Repeat steps 1 through 7 until the desired length of time has been advanced.

Note that for each time---average period in step 4, above, instability and stability are

determined by e > 1 and e < 1, respectively, with e = 1 being the neutral stability. If the

system is found to be unstable, it is not necessary to proceed to the next time step.

However, for the entire ranges of time for which Navier-Stokes solutions are available, the

stability analysis may be performed, even if instability has been found in previous time
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steps. This is so because Navier-Stokes solutions are independent of the stability analysis

as formulated here. Rather, the stabihty analysis here determines the state of stability or

instability based on current flowfield as calculated from the Navier-Stokes solution. The

following applications are based on computer code ECI-2.

7.6. APPLICATIONS

7.6.1 LIQUID PROPELLANTS

Case 1 Laminar Compressible Nonreacting Flows

Figure 2a shows the axisymmetric geometry of combustion/thrust chamber with 965

triangular elements and 528 nodes as a consequence of adaptive mesh process. Notice that

in the vicinity of the walls approximately 80% of the nodes are concentrated resulting in

prominent boundary layers. To demonstrate the capability of the code, initially, the

steady state flow field without disturbances is examined. The velocity vectors and

contours of Mach number, pressure, and temperature are shown in Fig. 2b, c, d, and e,

respectively. Formation of boundary layers (Fig. 2b), separation of boundary layers and

weak shock waves downstream (Fig. 2c, d), and decrease of temperature downstream and

toward the wall (Fig. 2e) are evident.

With disturbances of d = 10%, 20% and 30% imposed on the mean pressures at the

inlet, the Navier-Stokes transient analyses are performed. The time steps are continuously

adjusted to satisfy acceptable Courant numbers, 0.2 __ CN __ 0.4, for convergence. The

graphical representation of oscillations of all variables at every node versus time is

overwhelmingly complex. Therefore, wave forms only for d = 30% and _ = 3000 psi at

three selected positions, A at (1.8, 11.43 cm), B at (31.75, 11.43 cm), and C at (63.5, 6.55

cm) are shown in Fig. 3. Note that, although the sinusoidal input is provided at the inlet,

the oscillations downstream become nonlinear, possibly of sawtooth type.
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In Fig. 4, the energy growth factors _ for _ = 500 psi are shown for various %

disturbances. It is seen that for d - 10%, the energy growth factor remains in the stable

region _ < 1. The dotted hnes and solid lines indicate the results for the linear (Eq. 20)

and nonlinear (16) cases, respectively. As the disturbance increases (d = 20%) the energy

growth factor reaches the neutral stability, _ - 1 at t __0.015 sec. For d = 30%, the energy

growth factor increases further (c - 1.038) at t __ 0.2 sec. Notice that the hnear analysis

underestimates the stability if stable whereas it underestimates the instability if unstable.

The general trend is that instability is proportional to the percent disturbances.

As the mean pressure increases (_ = 3000 psi), the possibihty of instabihty increases

as shown in Fig. 5, with the conclusion that instabihty is proportional to the mean

pressure. Recall that for d -- 10%, _ - 500 psi, stability prevailed throughout whereas

with d = 10%, _ = 3000 psi neutral stability has been reached. The peak values of e for

= 3000 psi are significantly larger than those for _ - 500 psi.

Case 2 Turbulent Compressible Noureacting Flows

The discretized geometry for a steady state turbulent compressible nonreacting flow

is shown in Fig. 6a with a total of 2688 elements and 1416 nodes. As seen in Fig. 6b

(velocity vectors) and Fig. 6c (Mach number contours), the boundary layers are thinner

than in the case of laminar flow, leading to turbulent shock wave interactions. It is clear

that gradients of pressure (Fig. 6d) and temperature (Fig. 6e) are larger than in the case of

laminar flow.

Wave forms of transient turbulent nonreacting flow with disturbances, d = 30%,

- 3000 psi, at the three positions are shown in Fig. 7. Although the wave forms in

turbulence at these positions do not seem much different from the case of laminar flow, it is

quite possible that wave forms at other locations where turbulent velocity gradients are

significant would be drastically changed in contrast to the laminar flow.
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The energy growth factors for turbulent flow are shown in Fig. 8 for _ = 500 psi and

Fig. 9 for _ = 3000 psi. It is interesting to see that the effect of turbulence is to increase

instability as compared with the laminar flow. The general trend other than the turbulent

effect, however, remains the same as the laminar flow. That is, instability is proportional

to disturbances and the mean pressure. The linear analysis again shows that stability is

underestimated if stable and instability is underestimated if unstable.

Case 3 Chemically Reacting Laminar Compressible Flows with Hydrogen/Oxygen

Combustion

Figure 10 shows the discretized geometry for a steady state chemically reacting flow

without disturbances. A total of 1580 elements and 844 nodes are used. The chemical

reactions considered are shown in Appendix B. The mass fractions at the inlet are 0.111

for H 2 and 0.889 for O_, and the inlet velocity is 500 m/s. In this analysis the effect of

viscosity is ignored to ensure an enhanced computational convergence, which leads to a

flow without boundary layers along the wall. Due to the finite rate chemistry and stiffness

arising from the chemical source terms, the computational convergence is rather slow. In

the region of chemical reactions the velocity is decreased (Fig. 10b) and the Mach number

contours are spaced widely apart (Fig. 10c), resulting in a rapid increase of pressure (Fig.

10d), but no evidence of shock discontinuities (Fig. 10c, d) between the throat and the

downstream nozzle area. Temperature increases in the region of combustion in a sharp

contrast to the nonreacting cases (Fig. 2e and Fig. 6e).

The contours of 8 species are shown in Fig. 11, beginning with the reactants,

hydrogen (Fig. lla) and oxygen (Fig. llb), followed by products, H (Fig. llc), HO 2 (Fig.

lld), H20 (Fig. lle), H20 2 (Fig. 110, O (Fig. llg), and OH (Fig. llh). It is observed that

H 2 is depleted halfway between the inlet and throat whereas O 2 prevails further

downstream before it is depleted behind the throat. Most of the products (including the

radicals), H, HO_, O, and OH rapidly increase from the inlet and become maximum as
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they pass through the throat. In contrast, H20 and H20 2 gradually increase downstream

with a constant rate.

Figure 12 shows the wave forms of the transient chemically reacting flow with

disturbances, d = 30% and _ = 500 psi, at the three positions considered earlier. Notice

that, with chemical reactions, the frequencies of waves are very low and the response is

quite slow particularly at downstream locations. Once again, the results plotted in Fig. 12

are misleading because oscillations in other locations (over 800 nodes) may prove to be

significantly different. After all, combustion instability is determined by the stability

equation, not by the appearance of oscillations observed at random locations.

In Fig. 13, the energy growth factors for the chemically reacting flow are examined.

First of all, the linear analysis (dotted line) shows an apparent faulty prediction of

instability for d = 10%, in which the nonlinear analysis indicates e -_ 0 throughout the time

segment investigated. Obviously, this is an indication of unreliability of the linear

analysis. For d = 20%, however, the linear analysis appears to give the consistent results

similar to the earlier examples in that the linear analysis underestimates the stability when

stable and underestimates the instability when unstable. The nonlinear analysis shows

that, for d = 20% and d = 30%, the peak values of energy growth factors are significantly

larger than the nonreacting cases. Does this imply that chemically reacting flows always

tend toward instability? An affirmative answer to this question is premature. In fact the

entire investigation presented here is subject to the future verification by experimental

measurements.

7.6.2 SOLID PROPELLANTS

As an example we select the motor data used at Naval Weapons Laboratory (NWC,

Motor #9 in [152]). The following propellant and gas data are used: propellant density Ps

= 1689 kg/mS; propellant burning rate v o = 0.24 in/s; response function R = 0.85

(frequency w = 300 Hz) as determined from the NWC test data (see Fig. 14); burning
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surface pressure _ = 1000 psi; gas density p -- 7.1 kg/m_; burning surface normal velocity v

= 0.784 m/s; gas temperature T = 2883" R; Reynolds number Re -- 10,000; viscosity # =

1.4138 x 10 .5 kg/m/s.

For calculations required for the stabihty analysis, we use a smaller motor (L/D -

6) in order to reduce computer time with the geometry as shown in Fig. 15. The finite

element intermediate and final adaptive meshes are shown in Fig. 16a and Fig. 16b,

respectively. Pressure and velocity data at the burning surface are shown in Fig. 17a and

Fig. 17b, respectively.

Fig. 18 shows the streamline contours 0.0 < _ <_980 with A_ = 2.8 as they reach the

steady state condition. Here the Navier-Stokes time step is chosen to satisfy the Courant

number equal to approximately 0.4. Steep velocity gradients are apparent in the vicinity

of the nozzle.

Figs. 19 through 26 indicate wave motions at locations A and B (Fig. 15) for

pressure, longitudinal velocity, and radial velocity. Note that, as disturbances increase

from 10% to 80% at A, the frequency and amplitude for the pressure increase significantly

as seen in Figs. 19a through 19d. The longitudinal velocity turns to steep-fronted

N-waves as disturbances increase (Figs. 20c through 20d). Similar trends occur in the

radial velocity as shown in Figs. 22a through 22d. At location B, the pressure peak is

smaller than at A (Figs. 22a through 22d). The longitudinal velocity increases drastically

and there is a clear evidence of shock waves as demonstrated by the steep-fronted wave

forms as disturbances increase (Figs. 23a through 23d). The radial velocity, however,

decreases significantly with waveforms being quite irregular particularly at large

disturbances (Figs. 24a through 24d).

Figures 25 and 26 represent waterfall plots for pressure and longitudinal velocity

modes, extended to time t - 0.12 sec. Initial pressure disturbances upon ignition disappear

as time progresses, but as disturbances increase, wave motions become prominent at time
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t = 0.05 sec. with the frequency of approximately 990 Hz (d = 50%, 80%) as shown in Figs.

25a through d. For the longitudinal velocity (Figs. 26a through d), however, a prominent

peaks occur at d = 30% at approximately 980 Hz but are gradually reduced as disturbances

increase to 80%, but instead smaller peaks appear at 1300 Hz, 2500 Hz, 2500 Hz, and 3100

Hz. These phenomena correspond to the stability calculations as discussed below.

Finally, the energy growth factors for various % disturbances are shown in Figs. 27a

through 27d. Solid and dotted lines represent the nonlinear (Eq. (16)) and linear (Eq.

(20)) analyses, respectively. It is seen that stability condition (0 < e < 1) is maintained for

20% < d < 50% but instability (e > 1) occurs at t = 0.03 sec. for d = 80%. This

corresponds to the waterfall peak at 990 Hz which begins at t = 0.03 sec. Recall, however,

that the energy growth factor which determines instability represents the entire system

behavior contributed from oscillations of all variables. It is interesting to note that the

linear analysis always underestimates the stability if stable but underestimates the

instability if unstable. It should be remarked that, for this short motor (L/D = 6), it took

the large % disturbance (d = 80%) to cause the motor unstable. In a separate analysis

with the full length motor (NWC #9 motor, L/D = 35.6) the motor became unstable at d

= 20%.

7.7 CONCLUSIONS

The entropy controlled instability method has been applied to various problems in

laminar flows, turbulent flows, and reacting flows for determination of stability conditions.

The following conclusions are reached:

(1) Instability increases with an increase of disturbances.

(2) Instability increases with an increase of the mean pressure.

(3) Instability increases as laminar flows are changed to turbulent flows.

(4) Instability due to production of radicals under the finite rate chemistry is significant

for the case investigated.
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(5) The linear stability analysis underestimates stability if stable and underestimates

instability if unstable.

(6) The correct stability analysis calls for at least the third order nonlinearity.

(7) Navier-Stokes solutions are capable of simulating the previously observed physical

phenomena such as pressure and velocity coupling, flow turning, DC shifts, distributed

combustion, pulsing, limit cycles, triggering, etc.

(8) Effects of all physical phenomena are then reflected in the energy growth rate

parameters at, ct2, and cq and subsequently in the energy growth factor E.

(9) Future studies are required to validate the present theory in comparison with

experimental results for those cases other than examined in this paper.

8. CONCLUDING REMARKS

Unstructured grids, adaptive methods, and vector processing have been applied in

developing a major computer code for the solution of reacting flow Navier-Stokes system

and determination of combustion instabilities. Implementation of parallel processing is in

progress and preliminary results are expected shortly.

This report does not include evaluation of codes developed by other organizations.

Instead, the basic criteria for accuracy and efficiency have been established, and some

applications have been made on rocket combustion problems. Research toward an ultimate

goal, the most accurate and efficient CFD code, is in progress and will continue for years to

come.
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APPENDIX A

INTEGRANDS OF Ep E2, Ea, It, I2, 13

a {1) = VjVj + flVjVj

a (2) _ , , ,= p vjvj

(PV i + p'Tvi),i + _¢j(pvlv i + #'vjvi + P'vivi),ijr vj(PrCiv j + pvIv j + p'_civj),i
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APPENDIX B

REACTION EQUATIONS

H 2 + 0 2 = 2OH

H + 0 2 = OH + O

OH + H 2 - H20 + H

O + H 2 -- OH + H

2OH = H20 + O

H+ OH+M=H20 + M

2H+M=H2+M

H+ 02+ M=HO2+ M

HO 2 + OH = H_O + 0 2

HO 2 + H = H 2 + 02

HO 2 + H = 2OH

HO 2 + O = OH + 0 2

2HO 2= H20 2Jr 0 2

HO 2 + H 2 = H_O 2 + H

H20 2 + OH = HO 2 + H20

H20 2 + H = OH + HO 2

H20 2 q- O = OH + HO 2

H20 2 + M = 2OH + M
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88.9 cm

(s) Di_m_m_ g_met_, 965 elmmnta, 528 nodes
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(b) Velocity field, 1 mm = 10S m/s

(c) Math number contoum, max = 1.6, rain = 1.6, incr = 0.032

(t//l/\\\\\\\\\\\\l
(d) l'_mmre ¢ont_mr_,max = 3000 _ rain = 230 pei, inc: = 53 p-_

(e) Temperature contours, max = 3656.33" K, rain = 8.26" K, incr = 72.96" K

Fig. 2 Stea_iy _ate laminar nonxmtctmg flow without disturbances. M (inlet) = 0.2, Re

= 66,000, /.t = 0.23 kg/m2/s, 7 = 1.2, p = 3000. psi, p = 55.8 kg/m ;, T =
3656.33" K
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H_. 6 Steady state turbulent nonreactin K flow without disturbancJ_s. M (inlet) = 0.2,

i_e = 500,000, # = 1.737 kK/m=/s, 7 = 1.2, p = 3000 psi, p = 55.8 kK/m _, T =
3656.33" K
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(a) D_sed geometry, 1580 elem_U_ 844 node=

(b) Velo¢/_ field, 1 mm = 262 m/s

(c)

[

i
(c) Ma.-.h number contour=, max = 4.8, rain = 0._3, incr = 0.089

(d) Pressure contours, max = 1897 Pro, rain -- 46 psi, incr -" 37 p,,;

[
Temperature contours, max -- 635.1" K, rain -----260.2" K, ;ncr -- 7.5"K
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Steady state chemicatty reacting flow without distu_rbances, inlet velocity = 500

._Ke -- 66,000, # -- 0, 7 - 1.413, _ -- 500 pro, p -- 40.08 kg/m _, T - 500* K,• mass fraction H_ -- 0.111, O 2 --- 0.889
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(a) H 2 con_l, max -- 0.111, _0_Ln-- 0.11, Lnc: -'- 0.8 x 10.5

(b) 0 2 contoun, max = 0.889, rain = 0.884, ;-cr = 0.98 x 10"4

(c) IT contour_ max = 0.145 x 10 "14, _in -" O, ;ncz = 2.89 x 10 "16

(d) I:[0 2 contours, max = 0.46 x 10 -s, m/n = O, ;nor = 0.92 x 10"r

Fig 11 Distributions of various chemical species at steady state without disturbances
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(g) O conUmm, max = 0.1139 x [0 -|1, rain = 0, incr = 0.22 x l0 "13
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Fig 11 Distributions of various chemical species at steady state without disturbances,

continued.
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Fig 15 Motor geometry for stability calculations, A (x = 5.49", y = 0.79"),

B (x= is', y = 0.84")

Fig 16a Finite dement intermediate adaptive mesh configuration,
332 dements, 219 nodes

Fig 16b Finite dement final adaptive mesh configuration, 4040 dements, 2159 nodes
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Fig 25 Watexfa11 plots for pressure at location A for various % disturbances
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Fig 26 Waterfall plots for longitudinal velocity at location A for
various % disturbances
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